‘ ! ! . LLNL-CONF-411355

LAWRENCE
LIVERMORE
NATIONAL

~ooe | Radioactive Contraband
Detection: A Bayesian Approach

J. Candy, E. Breitfeller, B. Guidry, D. Manatt, K. Sale,
D. Chambers, M. Axelrod, A. Meyer

March 18, 2009

IEEE OCEANS '09
Bremen , Germany
May 11, 2009 through May 14, 2009




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.



Radioactive Contraband Detection: A Bayesian
Approach

J.V. Candy,Fellow, IEEE E. Breitfeller, Member, IEEE B. Guidry,
Member, IEEED. Manatt, K. Sale, D. ChamberSgnior Member, IEEE
M. Axelrod and A. Meyer,Senior Member, IEEE

Abstract—Radionuclide emissions from nuclear contraband a multimodal (multiple peaks) representation. We develop
challenge both detection and measurement technologies to capphysics-based statistical models that capture the essence of this
ture and record each event. The development of a sequentialjynortant radiation detection problem and incorporate them
Bayesian processor incorporating both the physics of gamma- . . . L .
ray emissions and the measurement of photon energies offersINt0 @ sequential Bayesian processor which is esp_eC|aIIy us_eful
a physics-based approach to attack this challenging problem. When only low count data is available and a rapid detection
It is shown that a “physics-based” structure can be used to is required. In general, the model-based approach to signal
_develop an _effective (jetection technique, but als_o moFivates the processing incorpora’[es information about the procmy
implementation of this approach using or particle filters 10 emjssions), measurement system (semiconductor detectors)
enhance and extract the required information. . . . .

and uncertainty or noise (background, random noise, ampli-
| INTRODUCTION tude fluctuations, time jitter, etc.) in the form of mathematical
models to develop a model-based procesMiBP) [3] capable

Radionuclide detection is a critical first line defense tof enhancing or equivalently extracting signals from highly
detect the transportation of radiological materials by potentiahcertain environments [2].
terrorists. Detection of these materials is particularly difficult Some work has been accomplished on this problem ([5]-
due to the inherent low-count emissions produced. These loj#4]), but unfortunately the physics models incorporated into
count emissions result when sources are shielded to disguise processor do not capture the true essence of the problem
their existence or, when being transported, are in relatiegpecially from a signal processing perspective. The proposed
motion with respect to the sensors. Radionuclide identificatiglutions are based on enhancing the outputly spectrum
from low-count gamma ray emissions is a critical capabilitgenergy histogram) by attempting to remove background inter-
that is very difficult to achieve, moreover, this methodologference and noise while enhancing the spectral (energy) lines
must cope with background noise, finite detector resolutiotn detect the corresponding radionuclide. The identification of
and the heterogeneous media along transport paths betwesionuclide sources from thejrray emission signatures is a
the sources and detectors. Detection/classification/estimatiasll-established discipline using spectroscopic techniques and
therefore, becomes a question of increasing signal-to-nowgorithms [2]. Unfortunately, these techniques fail on low-
ratio (SNR) in this case, since low-count emissions becomeount measurement data.
buried in the background and Compton scattering noise, ren-Our approach differs in that it models the source radionu-
dering a meaningful and timely detection highly improbablelides by decomposing them uniquely as a superposition
[1]-[2]. (union) of monoenergetic sources that are then smeared and

One of the major challenges is to develop techniques thdistorted as they are transported through the usual path to
can provide a timely solution. The basic problem we discusstise detector for measurement and counting as illustrated in
the detection and classification of radioactive contraband frdfilg. 1. The measured data consists of a low energy count,
highly uncertain (noisy) low-count, radionuclide measureémpulsive-like, time series measurements (energy vs time) in
ments using a statistical approach based on Bayesian inferetiwe form of anevent mode sequen¢&EMS) obtained from
and physics-based signal processing. In this paper we deveppse shaping circuitry [2]. The problems of interest are then
a Bayesian statistical approach to solve the radiaation detectaefined in terms of this unique, orthogonal representation in
problem. The usual model-based approach [3] is limited beich solutions based on extracting this characterization from
cause of two major reasons: (1) the physics models employewicertain detector measurements can be postulated.
do not necessarily capture the true essence of the problem; anbh Sec. Il we develop the physics-based signal process-
(2) the usual statistical machinery to solve such a probleimg models employed in the subsequent Bayesian constructs.
is limited in scope. That is, the contemporary approach idere we start with the monoenergetic representation and then
to use linearized approximations to the nonlinear processansorporate more of the instrumentation and noise into the
(extended and unscented Kalman filters) that imply underlyingeasurement model. Based on this representation we discuss
Gaussian probabilistic assumptions [3]-[5]. Unfortunately ththe overall probabilistic design in Sec. Ill illustrating how it
nuclear physics dominating this problem is not characterizedolves naturally from the underlying source physics. In Sec.
as such by unimodal (one peak) distributions, but rather BY we investigate signal processing solutions to the processing



(or less) of the time. Most photons collide with material atoms

= st || pereron wreror ||| commer | 5% and are scattered losing energy in the exchange and in a sense
o ;: G2 R bl “a “losing its identity,” since it is no longer counted in the correct

energy bin complicating the spectrum even further.
The key issue in our approach is developing reasonable
statistical models of both emission and measurement processes

Fig. 1. ~Gamma-ay evolution and measurement. Radionuclide sourggat can effectively be used in the Bayesian framework. These
(EMS), medium transport (physics), detector material interaction, detector

temporal response (pre-amplification/pulse shaping) and ADC conversion WﬁﬁOChasFiC mOde_IS of the p_hYSical process mUSt_ incorporate the
quantization noise. loss of information resulting from the absorption of energy

between an ideal source and the detector. The underlying
probability distributions describe the physics of the radiation
problem as well as develop a sequential detection paradigm feinsport between the source and the detector.
local detection. In Sec. V we develop the overall classification Semiconductor (high purity germanium or sodium iodide)
scheme and demonstrate its performance on experimental datergy detectors are designed to measurentinay energy
The results of applying the processor to controlled expefirom the electron current induced by the energy deposition
mental data shows the capability of the sequential Bayesignthe incoming photons in the detector material. A typical
processor to perform in a reasonable manner. We summaigggector is plagued with a variety of extraneous measurement
our results in the final section. uncertainties that create inaccuracy and spreading of the mea-
sured current impulse (and therefereay energy). The source
Il. PHYSICS-BASED PROCESSING MODELS radionuclide can be represented by its constituents in terms of
The unique characterization of an unstable radionuclideonoenergetic (constant energy amplitude) components and
based on its electromagnetic emissions has been an inteas#al times asf(e,,, 7,»). Since this representation of the
area of research and development for well over 50 years [$purce radionuclide contains the constituent energy amplitude
[2]. 1t is well-known that a particular radionuclide can bdevels and timing, then all of the information is completely
uniquely characterized by two basic parameters:eit@rgy captured by the setd{en},{mm}], m = 1,---, M.. The
amplitude levels emitted in the form of photons or gamma-raysurce arrivals can be used to extract the corresponding set
(vy-rays) and its radioactivdecay ratewhich is directly related of decay constants,\,,} which are related [2]. Thus, from
to its arrival time [2]. Knowledge of one or both of thesethe detector measurement of the individual photon arrivals
parameters provides a unigque representation of a radionuclide equivalently the entireeMS, a particular radionuclide can
Mathematically, we define the paif{e.}, {A\n}], @s the be uniquely characterized. The constituent energy amplitude
respective energy level (MeV) and decay rate (probabilitgvels,{¢,,} and arrival times{,,}, extracted from th&eMS.
of disintegration/nuclei/sec) of then'”-component of the
elemental radionuclide. Although both of these parametefs Event Mode Sequence
are used to uniquely characterize a radionuclide, only one isNext we develop a more detailed mathematical representa-
actually necessary—unless there is uncertainty in extractitign of the event mode sequence in terms of its monoenergetic
the parameter. decomposition. From this decomposition, we then develop
Gamma-ray spectrometry is a methodology to identify rdhe basic signal processing model in terms of the random
dionuclides by estimating the energy (probability) distributioprocesses that govern its evolution.
or spectrum and creating a histogram of measured arrival datdefine{(n; ¢,,, 7,) as the component of aBMS sequence
at various levels (count vs. binned energy) [2]. It essentialgs the n'"-arrival from the m!"-monoenergetic source of
decomposes theg-ray emissions into energy bins discardingnergy level (amplitude), ¢,,,(n) and arrival time, 7,,(n)
the temporal information. As mentioned previously, the roleith associateddecay rate A, (n) —as a single pho-
of the v-ray spectrum is analogous to the role of the Fouridon impulse sample, that iS{(n;€m, Tm) = €n(n)o(t —
spectrum for identifying sinusoidal spectral lines in noise, a,(n)) and source rate,,(n).
particular radionuclide can be characterized by its inherentThe idealEMS is composed of sets of energy-arrival sam-
“energy spectral lines” in the spectrum. These sharp linpte pairs, {¢,,(n), 7n(n)}. We could visualize this energy
are used to identify the corresponding energy bin detectiegchange as a photon depositing its energy in the detector
the presence of a particular component of the radionuclideaterial and the pair of unique energy-arrival parameters being
In the ideal case, the spectrum consists only of lines extracted by the measurement system.
spikes located at the correct bins of each constituent energyln order to define the entire emission sequence over a
em, uniquely characterizing the radionuclide. A search of thepecified time intervallt,, T'), we introduce the set notation,
spectrum for the strong presence of these lines is used for := { 7,,(1) --- 7,,(N.(m)) } at the n**-arrival with
identification. The lines are easily identified when the photaN, (m) the total number ofcounts for the m!"-source in
interacts with the atoms of the detector material to produtke interval. Therefore{(n;¢,,, 7,,) results in a unequally-
charge directly proportional to its energy. This interaction ispaced impulse train. Theterarrival time is defined by
called a “photo-peak” which unfortunately occurs ol§% Ar,(n) = 7m(n) — Tm(n — 1) for A7, (0) = ¢, with




the corresponding set definition (above) df7,,(n). The Photon
monoenergetic source representatioha radionuclide source %
characterized by its unique set of energy/interarrival pair 2w
{em, AT} (Or equivalently as its energy/decay rate pairs

{€m, Am}) is given by

Model-Based Processor

ENERGY Line/Rate o
Ne (m) Detection/Estimati —» PDF Estimation

Es €m, ) = D €5 em(n), ATin(n)) =

ZOHA»OHTHOLOR O

COMPTON Rate

N (m)
Z em(n)o(t — ATy, (n)) at rate),, (n) (1) Derectin
n=1

for t, known. Let us extend thi€EMS model from a single .
monoenergetic representation to incorporate a setVbf BE:E'EGZ/LQT'Hg. sereer
monoenergetic sources that compose a complete source

dionuclide. Suppose we have a radionuclide source whose
EMS is decomposed into itd/.-monoenergetic source COM-gig. 2. Bayesian radiation detection: Acquisition, pre-processMgR),
ponents, £(n; e, AT). From the composition of theEMS energy/rate discrimination, Compton processing, background and extraneous
we know that {(n, €, Af’) _ Uﬁfllf(n; €m,s Af’m) PN line rejection, probability density function estimation and classification.
Zﬂj\f;l &(n; em, ATi); where the last equivalence results from
the pragmatic assumption that it is highlgnprobable that
any two arrivals will overlap. Thus, it follows that a completq,]
radionuclide can be represented in terms of its monoenerg
decomposition, that is, thEMS is:

Lumping the material uncertainties into an additive
oise process, the measuredh-interarrival of the mth-
erﬂ‘(z)noenergetic component can be characterized by

M. N.(m) pm(n) = €m(n)o(t — Atp(n)) + war, (n)
Ry(nie, AT) =Y > &(nem(n), Atn(n)) = where the uncertain energy amplitude level is assumed Gaus-
m=1 n=1 sian,e ~ N (en, 02 ), with inherent uncertainty representing
M, Ne(m) the material charge collection process time “jitter” by the ad-
Z em(n)o(t — Atn(n)) (2)  ditive zero-mean, Gaussian noise, ., ~ N (AT, Ufmw)-
m=1 n=1

Next we investigate the use of these models in Bayesian
whereR,,(n; ¢, A7) is the composit&eMS of the radionuclide, processor designs.

M, is th_e number of monoenergetlc source component_s in trllﬁ PHYSICS-BASED RADIONUCLIDE DETECTION
composite EMS, N.(m) is the number (counts) of arrivals = }

from the mth-monoenergetic source component in the time- Since all of the measurement data and required parameters
interval, [t,, T), em(n) is the nth-arrival of y-ray energy evolve from theEMS, we are in search of an estimator/detector
(amplitude) level of themthmonoenergetic component inthat enables us to “decide” when a particular target radionu-
the time-interval of the compositEMS, Ar,,(n) is the nth clide is present or not. We show the inherent structure of the
interarrival time of themth-monoenergetic component, in theProcessor in Fig. 2. After the single photon is processed by the
time interval of the composit&€MS. This representation canacquisition system, the extracted parameters are enhanced and
be extended even further to capture a set of radionuclidesP@$sed onto the energy/rate discriminators to “decide” on the
well. Thus, this unique physics-based representation provid@f2oton’s status (line/rate, Compton, reject). If acceptable, the

the basis to develop signal models for subsequent processiRgpPability density function estimates are sequentially updated
and provided as input to the radionuclide detector.

B. Detector Measurements We start with estimating the posterior distribution (or its
The pulse-modeof detector (semiconductor) operation, igquivalent) from the uncertain data, that is,

the most common technique employed daray detection, ) = =

since both amplitude and arrivals are measured [2]. Amplitude Pr(Ry(n: & AT)[En) < Prie, A7)[=n)

variations are typically expressed in terms of the differentiédr ¢ := {e1(n),---,en.(n)}, the complete set of en-

pulse height (amplitude) distribution which is a direct repreergy amplitude levels composin®, along with Az :=

sentation of the uncertainty in measuring the energy level. THig\r; (n), - - -, A7ar. (n)}, the corresponding set of interarrival

distribution is commonly called thdetector response functiontimes withZ,, := {£(1),---,£(n)}, the set ofEMS measure-

[2] and can be modeled in terms of our monoenergetic sounsents including the:th-arrival.

amplitude (energy amplitude level). Here the detector responséJnfortunately, the basic radionuclide physics is more com-

characterizes the energy deposited in the detector matephitated, since the emission of monoenergetic photons follows

scaled to produce the equivalent charge (current) at the putsevell-defined probability structure, that &ll monoenergetic

amplifier input electronics. photons arenot present in theEMS during an individual



. . . PHOTON PROCESSING
event (single photon arrival) onlgneof the energy amplitude | = 1 ‘
) A X A . | erec‘ R PULSE SHAPER MODEL-BASED | comp-2ay!
levels is present as dictated by its branching or probabili Haterial | .. e | 06) | e | 2eccEsson | &= )

of occurrence «;) associated with its inherent structure a o
specified in its energy decay diagram [2]. Therefore, we moc
this decay structure by a Markov chain model ([12],[13]

incorporating anindicator functiondefined by: i GHERGY/RATE DISCRIMINATION CLASSIFICATION :
! ENERGY LINE RATE FPARAMETER POF :
1 m = j : DETECTION DETECTION ESTIMATION ESTIMATION :
s i
Ij (m) = { e ool
0 m 7éj Fig. 3. Bayesian radiation detection channel details: acquisition, pre-

where Ij(m) is a random variable such that (Ey(m) __ processing MBP), energy/rate discrimination and classification.

1|¢(nse,7) = Pr(Z;(m) = 1|2,) = «; for «; the corre-
sponding branching oprobability of occurrenceof the jth-
monoenergetic RN component.

Incorporating this additional physics information () base

It is the joint relation of Eq. 6 that motivates the design of
d the processor. We note first that in this construct the interarrival

on the energy level diagrams of various radionuclides [2], VJ'g'nes are conditioned on the energy amplitude levels and

can model the radionuclide by its monoenergetic decompogf’tha |mp_ly|ng that wefirst extract the_se amphtudes from the
tion embedding the corresponding indicator functigh(m), EMS. Th_|s also leads us to the requwed_postenor based.on
such that Next, using the knowledge of the amplitude, we extract the
M. corresponding interarrival.
. _ . _ A single photon channel processor for energy line/rate
Rn(nie, AT) = mz;lf(n, émy £5Tm) = detection is shown in Fig. 3 after the acquisition and pre-
a processing steps are performed along with a pulse-height

M. Ne(m) A ) ) h
Z Z I (m)em (n)3(t — Atm(n)) 3) spectrum PHS estimate (not requw_ed). Simple energy ampll_-
oot tude level and rate detectors are first performed to determine
the status (accept or reject) of the processed photon—these

and therefore, for thgth-monoenergetic source we have discriminators implement the indicator function discussed pre-

Ne(d) viously. If acceptable, this photon is used to estimate the
§(ns €m, AT, = Z €j(n)d(t — At;(n))  (4) required posterior distribution for radionuclide detection.
n=1 After the photon is processed by a model-based proces-

With this in mind, the required radionuclide posterior dissor (optional), the distributed detector: (1) discriminates the

tribution can be decomposed in terms of each arrival pairdividual monoenergetic amplitudes identifying one of the
(¢;(n), ATj(n)) along with its associated probability of oc-parallel channels; (2) discriminates the corresponding rate
currence o, that is, parameter for that particular channel confirming the monoen-
) = _ - ergetic source detection from two parameters rather than one
Pr(Rn(n; & AT)|Zn) = Pr(e(n), Az(n), Z;(m)|=n) - (5) amplitude parameter; (3) estimates or enhances the particular
Applying Bayes’ rule we obtain amplitude and rate parameters along with the corresponding

_ . — distributions enabling the estimation of the radionuclide pos-

Pr(Ry(n; & AI)_'“") o Pr(Az(n_ﬂg(n)’Iﬂ'(m)’ =n) terior; and (5) detects/classifies the target RN.

X Pr(eg(n)|Z;(m),En) x Pr(Z;(m)|Zn) (6) To summarize, we are essentially implementing the mo-

The posterior radionuclide probabilitycan be estimated noenergetic decomposition using discriminators to decide

photon-by-photon and therefore evolves to the following prd/yhich threat energy amplitude level/rate channel the photon
cessor: belongs to or rejecting it completely if no such channel

1) Given the “truth” [{a!},{e\ )}, {ArtYim — indicates a valid detection. All of the physics information is
1. M. (from T.ables)?l Thma mas combined in the decision function thereby by the monoener-
2) D’eter’mine the jth-monoenergetic component Withgetic source pa_lrameter&,zl(, Aﬂtn_’afn)' This complete_s the_
PHZ;(m) = 1) — a;, decideon energy-interarrival conceptual design of the Bayesian processor for radionuclide
pairj(e- AT); 7 detection, next we develop the various components of the
)0 N

3) Given'm = j and the data=,, estimate theenergy processor for implementation.
amplitude distribution Pr(e;(n)|=,);

4) Givene;(n) and the dat&,, estimate thanterarrival IV. SEQUENTIAL BAYESIAN DETECTION

distribution:  Pr(A7;(n)|ej(n), Z,); In this section, we develop the sequential Bayesian frame-
5) Update the radionuclide posterior distributionwork and individual components of the processor. To formally
Pr(R,(n;€;, AT;)|=E,) using Eq. 6; and pose this problem, we appeal to classical (sequential) detection

6) Decideif this estimated distribution “matches” the targetheory [14]. We are to test the binary hypothesis that the mea-
radionuclide distribution. sured EMS has evolved from the targeted radionuclide (RN)



characterized uniquely from its monoenergetic decompositiépplying Bayes' rule, we obtain the decomposition (as before)
of Eq. 3. Therefore, we specify the hypothesis test Pr(E(n: ¢, Ar)|E Hy) =
y & 21 )|—=n—1, L) —
Ho: &(nye, AT) = Ry(nje, A) + v(n) [NON-TARGET] Pr(Az(n)|e(n), Z;(m), Zn_1, He) % Pr(e(n)|Z;(m), Zn_1, H)
Hy: E(ne, A1) = Ry(n; el ArY) + v(n) [TARGET] < PI(Z;(m)|Zn—_1, He) + P (n)|Zn_1, He) (13)

where R, (n; ¢, A7) is a random composité€MS contami-  pecomposing the parameter vectors using the fact that each
nated W|th zero-mean, Gaussian measurement (instrumenfgial has “no memory” and applying the chain rule of

tion) noise,v ~ N(0, o7) and probability, we obtain
M. Ne(m . =
TL € AT Z Z (t— ATm( )) (7) PY(AI(TL) | E(n)aIJ(m)aanlaHf)
m=1l n=l1 = Pr(AT,,(n em(n),Zi(m),=n—1, H
fOF € ~ N (Em, 02 ) ANA ATy ~ E(Apr,, ATim(1)). 11 (A7m(m) | 6m(n), Zy(m), Enr, He)
The optimal solution to this binary decision problem is Pre(n), Z;(m) | En_1,H)
based on applying th&leyman-Pearson theoreteading to M.
the sequential likelihood ratio [14] given by the recursion or = Priem(n) | Z;j(m),En—1,He)
equivalently sequential likelihood ratio for th&h arrival as =1

x  PrZ;(m)|En—1, He) (14)
Pré(n; €, AT)|En-1, H1)
Pr(&(n; €, AT)|E5-1, Ho)
Since the distributions under investigation are members of the
exponential family [12], then taking logarithms simplifies the

L[E,] = L[Ep_1] X (8) and therefore, we have

Pr(f(n'e AT)|En—1, He) =

computations. We definé\[Z,] := InL[Z,] to obtain the H P AT (n)]€em (n), Z;(m), En—1, He) X
tial log-likelihood
SraET baTreneo Pren (I 0m) Zo1,He) % PHZ, )] E0 1, o)
AlEn] = AEa—a] +InPré(n; e, AT)[En—1, Ha) + Prw(n)|Zn_1,He): £ =0, 1
— InPr(¢(n;e, AT)[En-1,Ho) 9) (15)
and therefore, the Waldequential probability-ratio tesbe- Substituting these distributions into Eq. 9 teequential log-
comes likelihood ratio detector is
AZ,)] >1InTqi(n) Accept H; AE] = A[E 1] +
Sn) = Sn—1
In 7y < AlE,)] <InT; Continue <
nToln)  LAE] <InTiln) (10) S I (Pr( AT () eh (1), ZH0m), 201, Ha) x
A=) < In7y(n) Accept H, m=
Pr(c, (1), Z4(m)[En-1, 1) + Pv(n)|Z0-1,H1) )
where the thresholds are specified in terms of the false alarm M.
(Pr4) and miss (R;) probabilities as - > In (PY(ATm(n)lem(n),Ij(m), En—1,Ho) X
~ Pul(n) _ 1-Pu(n) m=l
To(n) = Pra(n) Ti(n) = “Pran) Pr(epm (n), Z;(m)|Zn_1, Ho) + Pr(y(n)|5n,l,H0))
So we see that at each photon arrival (at time we se- (16)

quentially updatehe likelihood and thresholds to perform the, ore
detection — “photon-by-photon”. To implement the sequential

detector, we must specify the required distributions; therefore, Pr(em (n), Z;(m)|En—1, He) =
we have
Pr(&(n; e, AT)|En—1,He) = Pr(em (n)|Z;(m), Zn—1, He) x PHZ;(m)|Zn—1, He)

Pr(R, (n; e, A1, Z;(m)|Z, -1, He) + Pr(v(n)|Zn—1,He)  giving us the general form for our problémNote that this
(11) formulation provides us with a channel-by-channel (photon-
by-photon) processor, since theth terms are available at the

for the hypotheses specified By,; ¢ =0, 1. output of each channel

Using the monoenergetic radionuclide model, we obtain
— INote that this decision function not only incorporates the energy amplitude
Pr(&(n; e, AT)[Zn-1,He) = level () and interarrival time-tags/r,,) for each constituent monoener-
Prie(n). AT(n). Z:(m)|=. . H Priv(n)IZ, 1. H getic source composing the target radionuclide, but also the probability of
(e(n), Az(n), Z;(m)[En-1, He) + Prv(n)[En—1, He) occurrence or branching probability.4,) which acts as a weighting function
(12) in the overall superposition enabling all of the energy lines to be combined.



Let us further assume that the instrumentation noige.)) With these distribution models in hand, we can now construct
is small relative to the inherent parametric uncertainties arttie sequential detection algorithm as
ignore it, then the log-likelihood ratio simplifies to _
Pr(é(n; €, AT)|Z;(m), En—1, He)

A[E,] = A[En_1] + M.
= H Aar, exp{—amAar, ATm(n)}

M.

> InPrAT ()€, (n), TH(m),En 1, H1) + m=1

m=1 % Qm exp 4 — (em(n) = Em(n))?

InPr(ey, (n), Zj(m)|En—1, H1) — Nz 202

M. 1 1/2(71)

Z hl Pr(ATm(TL”Em(TL), Ij (m), Enfl, HO) =+ + \/%0'1/ €xp {_ 20,3 } (22)
m=1

In Pr(ep, (n), Z;(m)|Zn_1, Ho) which leads to thesequential log-likelihood ratiodetection

processor of Eq. 17 (assuming the instrumentation noise is
small) and using the “true” parametefst,, A7} ot } for
where we have applied the log transform and Bayes' rufé1 as
above completing the decision function.

(17)

A[E] = A S g (Lt

=] =A=, 1]+ n(u)
A. Sequential Radiation Detection (=) [ 1 mz::l \/EO’E;L
In this section we develop the statistical models (ignor- “In (M) 4 (a

ing the measurement noise) to implement the likelihood- V2ro.,,

ratio detector. Since each individual RN is uniquely specified 1/em(n) —em(m)\2 1 /em(n) —el, (n)\2
(statistically) by its parameter sefe, Ar,«}, we assume +§( ) N 5( ) (23)
that o is known for each target (from tables). Using th
energy amplitude level distribution and its decomposition o
Eq. 14 thejth-monoenergetic source component selected
the indicator functionZ;(m) is therefore

mAAT,, — ozfn)\tATm) ATy (n)

O¢,, Uisn

his completes the structure of the sequential Bayesian radi-
ion detector, we will discuss the actual photon-by-photon
implementation of this processor in a subsequent section.
Again note the incorporation of all of the physics information
Pr(e;(n), Z;(m)|Zn_1, He) = a;jPr(e;(n)|En_1,He) (18) available €,,, A7, ay,) the decision function (see previous
footnote).
where we have applied &;(m) = 1|=,-1) = «;. _ _ o
Each energy amplitude component is assumed GaussRnSequential Bayesian Parameter Estimation

with corresponding distribution In order to implement this radionuclide detection scheme,
_ ~ ) we must estimate the underlying parameter (amplitude and
Prlem(n) | Z;j(m),En-1,He) ~ N(€(n), o)) interarrival time) distributions. Investigating the monoenergetic

1 (ej(n) —€;(n))? EMS_decomposition of a radionuclid®,, with M, monoen-
WGXP T 92 (19) ergetic source components am(m) counts in the total
& K interval of count lengthV, we can define an overall parameter
Finally, the interarrival timesAr, are assumedonditionally Vvector by
independenof bothe andZ; (m) and exponentially distributed O:=[ | r| o=

such that
[61 DRy EME | ATl DRy ATME | al DTy aMé]
PrAT(n) | Zj(m),En-1,He) =

<

for © € R2M<x1 requiring 3M, parameters to specify the
unknown radionuclide. The number of arrivals counted in the
interval N is N, := [N(1) --- N (M.)] such thatN =
Zn]\f;l N.(m), as before.

M, exp{—amAar, ATm(n)} We assume that the energy amplitudes can be characterized
1 by a random walk model

(20)

=

Pr(ATy (n)|Z;(m), En—1, He)

=

=

m

e(n) =¢e(n—1)+w.(n—1) (24)
with «,,, the probability of occurrence and for the rate,, = for e, w € R*M1 and e ~ N(e, Ree); w, ~ N(0, R )

L/ AT, .that is, the reciprocal of the mean interarrival timeThe measurement instrument measures both photon energy
For the jth-monoenergetic source component, we have amplitude and interarrival time from thEMS, therefore, it

PAT(R) | Z;(m),Zn 1, He) ~ E(ajrar, AT;(n)) provides the vector measurement
= Aan exp{—ajAan, A7i(n)} (21) §n):=[&(m) | €ar(n) ] (25)



We model the energy amplitude component as the levir

contaminated with zero-mean, Gaussian instrumentation no
such that

e(n) = g/g(n) +ve(n) = €m(n) + ve(n) (26)

since the scalar measurement is photon-by-photon witk
N(0, R, ). The measurement system vectoiis al x M,
unit row vector, that is¢’ = ¢/, with a one in themth column.

war, ~  E(amAiar, OAtm(n)) and va,, o~
&\, var, (n)). The corresponding likelihood for this
problem is obtained using the measurement model and the

transformation of random variable rules [12] to give
Pr{énr (n)|AT(n)) = My v Ear(m)=Ar(n)

We estimate the posterior distribution using a sequential Monte
Carlo approach and constructbmotstrap particle filter[4]

(31)

Thus, our final photon energy amplitude level model is givefising the following steps:

by a Gauss-Markov representation

€(n) en—1)+w(n—1)

£e(n) 'e(n) + ve(n) (27)
with noise sourcesv, and v, characterized by zero-mean

multivariate Gaussian distribution with covariance matrices,
and R, ., respectively and the initial states the

Rwéwé
true mean values characterizing the target RID)
N (%o, Re,2,)-

Since we firsdiscriminatethe energy amplitude level to de-

~

termine which channel to process it, the actual implementatione

requires only a scalar algorithm for thmth-monoenergetic
line, that is, the monoenergetic line estimator is based on t
Markovian representation as

em(n) = en(n—1) 4w, (n—1)

§e(n) = en(n) +ve(n) (28)
with  €,,(0) ~ N(Em, Re, z,,) and w, ~
N(0,Rw,, w., )ve ~ N(0,Ry..). Thus, photon-by-

photon processing leads to a scalar channel-by-chan
implementation.

Since these characterizations are linear Gauss-Markov m
els [3], we know that the optimal Bayesian processor is t
linear Kalman filter with posterior distribution given by

Pr(em (n)|Zn) ~ N(ém(n|n), &;, (n|n))

with conditional mean and variance specified by

2

€m

ém(nn) = én(nn—1)+ K, (n)en(n)
em(n) = en(n) —én(njn—1)
K., (n) = & (nln)/o? (n) (29)

whereé,,(n|n) is the conditional mean estimate of theth-
energy amplitude level at arrival time based on all of the
data up ton; g2 is the corresponding error covariance
cov(e, (n)—ém(n|n)); em(n) is the innovations sequence with
covarianceg? (n) = cov(en(n)) and K, is the weight or
gain matrix [3]. Next we consider the interarrival processor.
From the statistics of th&MS process, we know that the

interarrival times are exponentially distributed with parameter

Aar such thatA7(n) ~ EAA-AT(R)) = Aarexp(—Aar X
AT(n)). Our process model for the interarrival time is jus

h

~ ~

« Initialize: A1(0) E(ATW(0), wan,
E(amAnr, ATm(n)), Wi(0)=1/Npji=1,---, Np;
State Transition: A7y, (n) = was, (n) for wy,, ~

Pr(wm, (n));

Log-Likelihood: InC(&ar,, (n)|ATm,(n)) = InA, —
Ay X (Ear(n) = A1(n))
o Weights: W;(n) = Wi(n—1) x C(€ar,, (n)|ATm, (n));

Normalize: W;(n) = %

Resample: Aty (n) = Klei (n);

Posterior: Pr(A7,(n)|Z,) = vazpl Wi(n)d(€anr,, (n)—
{nr,,, (n)); and

hes MAP Estimate: A7(n|n) = argmax Pr(AT,,(n)|Z,).

So we see that the sequential likelihood radionuclide detector
evolves from estimating the posterior distributions that require
parameter estimates of energy “line” amplitude, rate (interar-
rival times) and occurrence probabilities for implementation.
We used a Rao-Blackwellization [16] approach by partitioning
the state vector into the amplitude and interarrival estimators
aad applying a linear Kalman filter for the Gaussian distributed
amplitude and a particle filter for the exponentially distributed
aderarrival times (rate)—channel-by-channel.

8. Sequential Bayesian Processor Implementation

In this section we discuss the implementation of the pro-
cessor for the radionuclide detection processor following the
design structure developed in Sec. 3. First, we investigate the
individual channel processor illustrated in Fig. 3 one for each
energy amplitude/rate composing the target radionuclide.

1) Energy Amplitude Level/Interarrival (Rate) Discrimina-
tor: We apply an energy amplitude discriminator to "decide”
on which channel the photon should be processed and followed
by a rate discriminator using the interarrival “time tag”. The
discriminator used implied hypothesis testing by constructing
a confidence interval about the means of the respective pa-
rameters. Theenergy amplitude levetliscriminator performs
the following confidence interval test to accept or reject the

photon:
(32)

[€tru — KaOe < €m(n) < €try + KaO¢]

wheree,,., is the true (channel) energy amplitude associated

an exponential random variable, while the underlying me#!ith the targeted (for detection) radionuclidg(n) is the raw

measurement (instrumentation) noise given by

ATy (n) = war, (n)

Enr(n) = Atm(n) +var,, (n) (30)

surement model is this variable contaminated with exponentiaS Photon arrival amplitude level measuremenly, is the

respective confidence coefficient with associated confidence
level oo and o¢ is the associated standard deviation associated
with the precision of the measurement instrument. When the
photon amplitude is accepted as belonging tortite-channel,
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then¢.,, — e,(n) and the interarrival measurement time:
tag is tested similarly for validity by the following confidence
interval discriminatof

Enargy Amphitude  evel

[ATtru — RaOAr S A7A-nm(n) S ATi&ru + K/&UAT] (33)

655 [ BRI IR

where Ay, is the true (channel) interarrival amplitude assc s -

ciated with the targeted (for detection) radionucligg,. (n) o2 £u5] bt |

is the raw EMS photon interarrival measurement; is the o e
respective confidence coefficient with associated confider ENERGY AMPLITUDE LEVEL ESTIMATION

level @ and oo, is the standard deviation with the variance ! ZERO MEANMWHITENESS | TEST

of the interarrival. Since the estimated interarrival tirde?(,,)
is not the actual source interarrival, we use a simple transp(§ !
model with calibration data obtained prior to actual deploy
ment processing. ’

After discrimination, we raw measurements are then [ e
cessed using the Bayesian techniques, the linear Kalman fi 2% 5% 7w 7 O g0 ww
(LKF) and the particle filter P developed in the previous
section [4]. However, if the time-tag doe®t match the true, Fig. 4. Bayesian model-based processing'ftiCs radionuclide: (a) Photon
then photon isrejected and no further processing occurs&nergy aﬂintude IevelsieQSIimatels}(F). (b) Zero-mean/whiteness testing

. L : (8.7 x 10719 < 3.1 x 1072)/0.1% out).

The branching or occurrence probability is estimated using
counting methods as discussed next.

2) Probability of Occurrence EstimationiWe use a simple
counting technique to estimate the branching or occurrenckecked for validity by performing statistical whiteness tests
probability parameters. At each accepted arrival (after digrhich are optimal in the.KF case and reasonable for thé&
crimination). the counting estimator for tmeth-monoenergetic case ([3],[4]).

component of the radionuclide is given by
R N, (n) instruments (some for monitoring) including a high purity
G (1) = M. (n) (34) germanium (HPG) commercial detector. The sources consisted

_ _ of a set of known calibration sources with multiple energy lines
where N, (n) is the total counts for thenth source at arrival

) ) _ and unknown background sources as shown inRHSof Fig.
timen or simply themth-channel counand M (n) is thetotal 55 The results of the processing using the parallel/distributed

count of all of the RN channels or monoenergetic Sources,cessing scheme described in the previous sections are
at n. Note _thatNEm (n) is updated by arrivals on channelsgpown in Fig. 5b where we see the r&{Smeasured by the
corresponding to the targeted RN so that at each new changgl mercial instrumentation as well as that by the sequential
arrival we have{e,, (1), At (n)} — {eém(n +1), An(n +  Bayesian processor. Clearly, the sequential processor is capa-
1)} such that]\ifm (n +1) - Ne, (n) + LM(n +1) = po’of performing the estimation quite well as demonstrated
Me(n) +1 anddn(n +1) = dm(n). _ previously on the cesium source (see Fig. 4). RIS is

3) Energy Amplitude Level/interarrival (Rate) Bayesian Payncjyttered with undesirable energy counts and background

rameter Estimation ResultsAs each photon is acquired, theprimarily due to the processing scheme demonstrating its
measurement and arrival times are extracted and discrimina ctiveness over this controlled experimental data set.

If accepted then both the associated energy amplitude level ) ) ) ) o

and interarrival time are sequentially updated using & 4) Sequential Radionuclide Detection/Classificatiomhe
processor for the amplitude an@lF processor for the inter- sequential radionuclide detector is constructed as discussed
arrival time. A typical result of the processing for an entird? Sec. 4.1 and Eq. 23. However, it is implemented in a
run is shown in Fig. 4 for a cesium radionuclid&7Cs). channel-by-channel framework as depicted in Fig. 3. Basi-
In 4a we set the energy amplitude level estimate and its zergally, the individual distributions are calculated arallel
mean/whiteness test in Figb. Recall that for & KF processor at each channel and then combined in the detector/classifier
the resulting innovations sequence must be zero-mean Sillustrated for the specific distributions where the required
white (uncorrelated). This is the case for the energy amplituf@rameters are replaced by their estimates. At each arrival
estimates with §.7 x 10719 < 3.1 x 10-2)/0.1% out) as after discrimination, the accepted channel photon, g&y
illustrated in the figure. The interarrival estimates are ald® Processed by the energy amplitude level and interarrival
reasonable and the zero-mean/whiteness check validatesPftsameter estimatorg)providing the input to the likelihood
performance with§.3 x 104 < 3.1 x 10-2)/4% out) quite ratio along with the truth parameterg’] available from the

good. In summary both estimators perform reasonably and &@les [2] to givel{e;, }, {A7;} {ag, }]; m=1,---, M. Us-
ing the distribution relations developed for the joint parametric

2For largen, the estimate is approximately Gaussiam; ~ N'(\, A/+/n).  distributions, and simplifying notation, we define the following

Care.

The experimental set-up consists of sources, measurement




led Pulse-Height Distribution o *3Ba, 1¥7¢ — ¢t 2
2000 Scaled Pulse-Heigl istribution o a, s, 1 €Em (n) Em (n) (40)
[—= Experimental: blue ] 2

1500 - Oet
£ 1000 with implementation depicted in the figure where we ob-
sl [ serve that after successful discrimination the parameters are
ol | I 11171120 20e | oreasesseten Pessast estimated and employed to calculate the log-likelihood func-
= o e tion as in Eq. 40. These are estimated channel-by-channel

(mth-channel) and the overall decision function implemented

Scaled Pulse-Height Distribution of:  39Ba, 1% . g . - . .
caled Polserengim Distribunon o S sequentially (in arrival time). The diagram shows the input

wo| 3 T '?7’Ej;jjﬁg”””’1*'5”e"’”’" e photon measurement data (raw amplitude/interarritpr
£ 1000 o u l discrimination as input to the individual channel parameter
8 ool 1 % | estimators. Once the parameters are estimated they are im-
. I \ll | R I L@ T T AT plemented in each channel log-likelihood partial calculation
0 s00 s, 1000 1250 (O, (n; 6)) and all of the partial sums are combined along with

- the previous (in arrival time) log-likelihood to sequentially
Fig. 5. Resuilts of Bayesian parameter estimation 'f6tBa,'*"Cs, *’Co  pdate the new log-likelihood at time It is then compared to
radionuclides: (aPHSestimation using high precisioil Ge commercial de- the th hold t if a detecti . ible. If not. th t
tector. (b) Parallel/distributed Bayesian processor usig and PFparameter e refs 0ld 10 see It a detection _'S pOSSI e. lrnot, the nex_
estimators. photon is processed and the log-likelihood updated to see if
a decision can be made. This sequential radionuclide process

y ional f continues until there is enough data for a decision to made.
general functional form

Om (n;0) := PHATm (1) L (), En—1, He) X The sequential Bayesian detector was applied to a set of
Pr(em (1) Zm k), En—1, He) X PUZyn (k) [En—1, He) experimental composite radionuclid&VIS data consisting of
(35) three radionuclides cobalt®4Co), cesium {37Cs), barium
(*33Ba) with 2, 1 and 5 energy lines (monoenergetic sources),
respectively along with background and an extraneous potas-

V. PROOFOF-PRINCIPLE EXPERIMENT

and for our specific problem, we have under hypoth&gjs

. dmj\mm(nln) . sium source. The sequence and corresponding pulse-height
Om(n:0) = V2., (nln) eXp{ = GmAan, (nln) x spectrum is shown in Fig. 5. In (a) we observe the measured
(em(n) E_mg (nn))? photon energy amplitudes with tHfeéHSshown in (b). The pri-
ATp(n) — —= — L } (36) mary objective was to assess the performance of the processor
26¢,,(nfn) along with ability to detect and classify targeted radionuclides.
and under hypothesi¥ After an initial calibration phase of the algorithm which
al Al consisted of “tuning” the Bayesian processors on simulated
Om(n; 0" = AT and controlled data, setting initial parameters, etc., the overall
\/%Ueﬁn results of the processing are shown in Fig. 6. We note four

(em(n) — €t )2 } columns of data, the first column is the composite pulse-height
—— 52 ( spectrum, with the second the compodit!S with the circles
representing thdiscriminatoroutput photons. Notice that they
are chosen by the discriminator confidence intervalsbimth
(38) energy amplitude and the corresponding time-tag and align
ith the photo-peak bins of th®HS The third column rep-
esents the enhanced energy amplitude levels of the processed
(channel) photon while the final column is the likelihood
_ _ M M- A decision functions for each of the targeted radionuclides. As
AlEn] = AlEn—] + Z 0O (n; 6') — Z 1n O (n; 0) each photon is processed, the decision function is sequentially
m=t - (39) updated until one of the thresholds (target/nontarget) is crossed
Combining similar terms, we obtain the final sequential logdighter crosses in figure) declaring a threat or non-threat. Note

Therefore, we can re-write Eq. 23 using this notation simp
as:

likelihood ratio radionuclide detector specified by: that the barium is detected (threshold exceeded) first (0.78
o secs) followed by the cesium (1.0 sec) and then cobalt (4 sec).
A[En] = A[En_i] + Z In ( )‘A‘rm) It is interesting to note that the decision function is using all
" " V2roe of the available information extracted from ti&MS.

It should also be noted that the thresholds are determined
—1In (M) + (am)\m (n|n) — g, Na, ) from a receiver operating characteristR@C) curve for each
V276, (n|n) " " radionuclide decision function. That is, we synthesE®S
A 1 /€m(n) — €m(n|n)\2 and noise sequences using a brute force approach to estimating
X AT (1) + 9 (—) the ROC curves in order to calculate the required thresholds.

Ge, (nln)
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Fig. 6. Sequential Bayesian detection and classification. (a) Pulse-heigig]

spectrum (after calibration). (bEMS with discrimination (circles). (c) En-

hanced energy amplitude levels. (d) Log-likelihood decision functions fqn6]
cobalt 60, cesium 137 and barium 133 radionuclide detection/classification.

[17]

Based on the selected detection and false-alarm probabilitf'
respectively, (9%, 2%), the thresholds corresponding to this

operating point were calculated according to Eq. 10 for ea<[:1r2)

radionuclide.

V1. SUMMARY

We have shown that a sequential Bayesian detector can be

[20]

developed to solve the radiation detection problem by defining
a target radionuclide(s) and its monoenergetic decomposition
model evolving from the underlying transport physics of the

photon and measurement process. We developed a Bayesian

probabilistic framework to theoretically define and solve the
problem. Under certain assumed distributions, a particular real-
ization of the process was successfully developed and applied
to experimental data demonstrating its overall performance.
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